Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Frontiers in Education ; 8, 2023.
Article in English | Scopus | ID: covidwho-2283436

ABSTRACT

Many universities resort to online teaching due to the COVID-19 pandemic. It is a challenging endeavour, especially in Biology courses that require lab access. Mock grant application roleplay is one alternative to lab-based activities. Although using mock grant applications as an assessment tool is not new, there have been few studies on students' opinions. To the best of our knowledge, this is the first time that it has been used in place of lab-based exercises and in conjunction with virtual lab modules. Students are engaged in three aspects: (i) targeted literature review, (ii) research proposal writing and (iii) 5-min project pitching. The design of this module is flexible, and other lab-based courses can adopt it. This module encourages undergraduate students to explore the lab techniques and concisely present their research proposals. Compared to the previous semester before COVID-19, the number of students that achieved the "Distinction” grade or higher increased by 6.3%, whilst the failures decreased by 3.2%. A similar trend was observed in 2021, the second year this activity was carried out. A survey amongst students who took this unit reported that student satisfaction with this unit has improved by 11.1%. This improvement could be attributed to this mock grant activity because the format and difficulty level of the student assessments had remained constant. Furthermore, qualitative analysis conducted via focus group interviews indicated that students agreed that the mock grant proposal assessment was useful in preparing them for future careers and was relevant to the course learning outcomes. Several participants pointed to the assessment's potential usefulness for careers in research. In conclusion, this roleplay module can fulfil the learning objectives of this course whilst providing an authentic research experience without lab-based activities. Copyright © 2023 Tan and Lim.

2.
Acta Facultatis Medicae Naissensis ; 39(4):410-421, 2022.
Article in English | EMBASE | ID: covidwho-2282439

ABSTRACT

Introduction: Biologics (biopharmaceuticals) present new promising therapies for many diseases such as cancers, chronical inflammatory diseases and today's biggest challenge - COVID-19. Research: Today, most biologics have been synthetized using modern methods of biotechnology, in particular DNA recombinant technology. Current pharmaceutical forms of protein/peptide biopharmaceuticals are intended for parenteral route of administration due to their instability and large size of molecules. In order to improve patient compliance, many companies are working on developing adequate forms of biopharmaceuticals for alternative, non-invasive routes of administration. The aim of this work is to review current aspirations and problems in formulation of biopharmaceuticals for alternative (non-parenteral) routes of administration and to review the attempts to overcome them. These alternative routes of administration could be promising in prevention and treatment of COVID-19, among other serious diseases. Conclusion(s): The emphasis is on stabilizing monoclonal antibodies into special formulations and delivery systems;their application should be safer, more comfortable and reliable. When it comes to hormones, vaccines and smaller peptides, some companies have already registered drugs intended for nasal and oral delivery.Copyright © 2022 Sciendo. All rights reserved.

3.
Front Immunol ; 14: 1123805, 2023.
Article in English | MEDLINE | ID: covidwho-2261649

ABSTRACT

Viral infectious diseases threaten human health and global stability. Several vaccine platforms, such as DNA, mRNA, recombinant viral vectors, and virus-like particle-based vaccines have been developed to counter these viral infectious diseases. Virus-like particles (VLP) are considered real, present, licensed and successful vaccines against prevalent and emergent diseases due to their non-infectious nature, structural similarity with viruses, and high immunogenicity. However, only a few VLP-based vaccines have been commercialized, and the others are either in the clinical or preclinical phases. Notably, despite success in the preclinical phase, many vaccines are still struggling with small-scale fundamental research owing to technical difficulties. Successful production of VLP-based vaccines on a commercial scale requires a suitable platform and culture mode for large-scale production, optimization of transduction-related parameters, upstream and downstream processing, and monitoring of product quality at each step. In this review article, we focus on the advantages and disadvantages of various VLP-producing platforms, recent advances and technical challenges in VLP production, and the current status of VLP-based vaccine candidates at commercial, preclinical, and clinical levels.


Subject(s)
Vaccine Development , Vaccines, Virus-Like Particle , Humans
4.
Expert Rev Vaccines ; 21(9): 1233-1242, 2022 09.
Article in English | MEDLINE | ID: covidwho-1890645

ABSTRACT

INTRODUCTION: Influenza is a vaccine-preventable disease. Due to the evolving nature of influenza viruses, the composition of vaccines has to be updated annually. Most of the current influenza vaccines are still produced in embryonated chicken eggs, a well-established process with some limitations. AREA COVERED: This review focuses on the recombinant DNA technology using baculovirus expression vector system a modern method of manufacturing licensed influenza vaccines. The speed, scalability, biosafety and flexibility of the process, together with the reliability of the hemagglutinin in the vaccine, represent a significant advance toward new platforms for vaccine production. EXPERT OPINION: The scenario of vaccine production in the next years seems to be particularly interesting, involving a transition from the current egg-based production to new technologies, such as the cell culture platform, the RNA technology, the plant-based system, and the DNA vaccine. This latter offers great advantages over egg- and cell-based influenza vaccine production. The universal vaccine remains the goal of researchers and ideally would avoid the need for annual reformulation and re-administration of seasonal vaccines. The lesson learned from the COVID-19 pandemic highlights the importance of having different technologies available and able to promptly respond to a great demand of vaccines worldwide.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Baculoviridae/genetics , Humans , Influenza Vaccines/genetics , Pandemics , Reproducibility of Results , Technology
5.
Biochem Mol Biol Educ ; 49(4): 518-520, 2021 07.
Article in English | MEDLINE | ID: covidwho-1171603

ABSTRACT

Many universities resort to online teaching due to COVID-19 pandemic. It is a challenging endeavor, especially in Molecular Biology courses that require lab access. Mock grant application roleplay is one alternative to lab-based activities. Students are engaged in three aspects: (i) targeted literature review, (ii) research proposal writing and (iii) 5-min project pitching. The design of this module is flexible and, other lab-based courses can adopt it. This module encourages undergraduate students to explore the lab techniques they learnt and concisely present their research proposal.


Subject(s)
COVID-19/epidemiology , Molecular Biology , Pandemics , SARS-CoV-2 , Training Support , Universities/economics , Humans , Molecular Biology/economics , Molecular Biology/education
SELECTION OF CITATIONS
SEARCH DETAIL